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Abstract  
Weather affects the severity of many plant diseases, and climate change is likely to alter 

patterns of crop disease severity. Evaluating such future patterns can help in prioritizing crop 
breeding and disease management research efforts. We modeled the global effect of climate 
change on potato late blight, a disease infamous for its role in the Irish potato famine that 
continues to be an important limiting factor for potato production around the world. We used a 
newly developed disease metamodel, and considered five general circulation models and three 
greenhouse gas emission scenarios. We found that the average global risk of potato late blight 
increases initially under all three scenarios, though less so for the B1 (lower emissions) scenario.  
Later, estimated late blight risk declines below historical levels because there is not sufficient 
relative humidity to maintain infection as temperatures increase. While analyses of global 
disease scenarios make a number of simplifying assumptions, high temperatures may be an 
important limiting factor in the future for many foliar diseases such as late blight. 
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Introduction  
 

The risk of damaging levels of many crop diseases, referred to hereafter simply as 'disease risk', 
is strongly influenced by the weather. Infectious plant disease occurs due to the interaction of 
three factors: a favorable environment, a susceptible host, and a competent pathogen (“the 
disease triangle” (Madden et al., 2007)). Therefore, changes in weather due to climate change are 
likely to affect disease risk (Anderson et al., 2004, Coakley et al., 1999, Garrett et al., 2006) and 
the effects of plant disease on crop production (Hijmans, 2003). There is growing interest in 
plant disease risk under future scenarios (Luck et al., 2011, Chakraborty et al., 2011, Pautasso et 
al., 2010, Sutherst et al., 2011, Juroszek et al., 2011, Savary et al., 2011) and how to adapt 
disease forecasting models to new scales of application for scenario analysis (Seem, 2004, Seem 
et al., 2000, Garrett et al., 2011, Shaw et al., 2011).  
 
Potato late blight is an important crop disease caused by the oomycete Phytophthora infestans 
(Mont.) De Bary.  Late blight is well-known for its role in the Irish potato famine and its current 
threat to potato production globally. Potato yield loss from diseases, animal pests and weeds was 
estimated to be around 40% of attainable production, with diseases alone accounting for 21% 
loss (Oerke, 2006), and potato late blight is generally recognized as the most important potato 
disease. While late blight resistance is available, it is frequently not present in popular varieties 
(Forbes, 2012) so management is often dependent on pesticides, which can be a cost-prohibitive 
input for resource-poor farmers (Blandon-Diaz et al., 2011, Kromann et al., 2009) and can affect 
non-target species (Cheatham et al., 2009).  
 

Models of the effect of weather on within-field risk of potato late blight have been evolving 
for almost a century (Van Everdingen, 1926, Beaumont, 1947), generally drawing on 
temperature and humidity as the most important predictors (Harrison, 1992). Fry et al. created 
SimCast (1983) and Grünwald et al. (2002) further developed the SimCast model and 
demonstrated that it also performed well in a tropical highland location. The SimCast algorithm 
estimates the risk of damaging late blight levels, expressed as ‘blight units’, based on the 
temperature during the consecutive hours in a day when relative humidity is above 90%. 
SimCast thus uses hourly weather data as input. To rescale SimCast for larger time steps and 
easier application to wider geographical areas, we developed a metamodel of the relationship 
between weather (temperature and relative humidity) and late blight risk, based on SimCast 
output (Sparks et al., 2011). The metamodel mmMonthly uses monthly time-step temperature and 
relative humidity data to predict disease risk expressed as ‘blight units’. 

Hijmans et al. (2000) evaluated contemporary severity of potato late blight indirectly using 
tactical decision models, Blitecast (Krause et al., 1975) and SimCast (Fry et al., 1983, Grünwald 
et al., 2002) to predict the need for a prophylactic pesticide application to control late blight in 
farmers’ fields. These models were then scaled up to estimate the number of pesticide 
applications necessary to manage late blight globally. To achieve this, they used monthly climate 
data and a weather generator to temporally downscale the hourly weather data necessary for 
these models. 

The impacts of climate change on potato late blight have been studied in the Midwestern US 
(Baker et al., 2005) and Finland (Hannukkala et al., 2007, Kaukoranta, 1996), indicating the 
potential for increased risk. Our goal was to provide the first global analysis of climate change 
effects on potato late blight. We used mmMonthly to evaluate the effects of climate change 
emission scenarios and the level of disease resistance on the change in disease risk. Furthermore, 
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using the mmMonthly metamodel to evaluate risk illustrates the potential of metamodels for 
rescaling short-term forecasting models for scenario analysis. Results are discussed in the 
context of important agroecological areas and political boundaries. 
 
Materials and Methods  
	
  

As an overview, we used gridded historic climate data (for the reference time period) and 
gridded, future predicted climate data. A crop model was used to estimate potato-growing 
seasons for each grid cell for reference and future periods. The climate data were then used in the 
mmMonthly model (Sparks et al., 2011) to evaluate late blight risk for a three-month potato-
growing season for each grid cell. The mmMonthly model estimates blight units, a measure of the 
relative risk of damaging levels of potato late blight occurring given an input of monthly 
temperature and monthly relative humidity (Sparks et al., 2011). Because late blight occurs so 
widely in potato production systems and the driving factors are the weather conditions, 
temperature and relative humidity, we assumed that inoculum was not a limiting factor in areas 
where potato is grown. 

We used CRU CL 2.0 grid mean monthly temperature, mean monthly relative humidity and 
mean monthly precipitation data from New et al. (2002) as our reference climate data. These 
data are at a spatial resolution of 10 arc minutes (344 km2) covering the time period from 1961 to 
1990. Future climate emission scenario data were downloaded from the World Climate Research 
Programme’s (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model 
data (Meehl et al., 2007), that we statistically downscaled to 10 arc minute resolution. Only data 
for General Circulation Models (GCM) that provided maximum temperature, minimum 
temperature, and vapor pressure were selected (Table 1), relative humidity was calculated from 
these data. Ensemble model averages of the non-weighted means of the GCM outputs for each 
respective climate scenario were created for mean monthly temperature and mean monthly 
relative humidity.  

The global daily average blight unit accumulation per month was calculated from mean 
monthly temperature and mean monthly relative humidity using the mmMonthly metamodel for the 
1961-1990 reference climate normal (referenced from here on by the midpoint year as the 1975 
time slice), and three future 20-year time slices, (referenced hereafter by the midpoint year of the 
time slice: 2000-2019 (2010), 2040-2059 (2050) and 2080-2099 (2090). The relative risk of 
damaging levels of late blight was then averaged using a three-month moving window to provide 
the average daily blight unit accumulation for 12 three-month time periods representing three-
month potato growing seasons.  

Optimal potato planting dates were estimated using the ECOCROP model as implemented in 
the dismo package in R (Hijmans et al., 2012) using mean monthly temperature, mean maximum 
monthly temperature, mean minimum monthly temperature and mean monthly precipitation data. 
The first day of the first month of a three month growing season in which planting would 
produce the highest potato yield for each grid-cell was calculated. Optimal planting dates were 
generated for the reference climate normal and the ensemble GCM outputs for each of the three 
respective future time slices. These data were used to estimate late blight risk for what would be 
a geographic location’s most productive potato growing season in the absence of pests and 
disease. 

Total rainfed and irrigated potato production by country (Portmann et al., 2010) was used to 
remove areas where potato production is currently limited. Several countries were selected for 
further analysis because they are representative of highland or lowland tropical potato 
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production, areas where potato is an important crop for poverty alleviation and where late blight 
is difficult to manage because of year-round potato production (Garrett et al., 2009) (Table 4). 
These countries include Colombia and Ecuador in the Andean highlands (Figure 4); Ethiopia 
(Figure 5); Rwanda in the Lake Kivu highlands region (Figure 6); Nepal in the Himalayan 
highlands and Indo-Gangetic Plain (Figure 7), and Indonesia in the South East Asian highlands 
(Figure 8).  
 
Results 	
  
 

The following examples illustrate the differences on the ground associated with mean daily 
growing season blight units. The mean daily blight units in Rwanda during the baseline was 2.41 
(Table 2), and Rwanda has had consistent problems with late blight management such that 
pesticides have frequently been necessary for successful management (Forbes, personal 
observation).  In contrast, the mean daily blight units in Egypt during the baseline were 0.41 
(Table 2), and late blight has not generally been a major problem in Egyptian potato production 
(Forbes, personal observation). 

Global average late blight units increase initially (2010 time slice) relative to reference 
climate data under all three emission scenarios examined (Figure 1). For the A2 and A1B 
scenarios, the global average accumulation falls in 2050 to levels equal to the historic levels and 
falls farther in the 2090 time slice. Throughout all three time slices examined for GCM outputs, 
the B1 scenario has the highest global average risk of the three scenarios and coolest global 
average temperatures. Initially, during the 2010 timeslice, the average blight units accumulated 
are nearly equal under all scenarios, by 2050 the scenarios begin to exhibit differing levels of 
accumulation and by the 2090 time slice the average blight unit levels in each climate scenario 
differ (Figure 1). However, all three scenarios do have a lower average blight risk accumulation 
by 2090 than the 1975 time slice. 

In the original SimCast model, as temperatures rise above 22 C a longer period of high 
relative humidity (greater than or equal to 90%) is required to register one blight unit (Fry et al. 
1983, Grünwald et al. 2002). In this analysis temperatures increased steadily during the growing 
seasons when averaged globally across all potato-growing areas (Figure 1), correspondingly the 
blight unit accumulation decreased with this temperature increase. The minimum increase was 
0.9 degrees for the B1 scenario. The A1B scenario temperatures increased more, by 1.2 degrees 
with the A2 scenario having the greatest increase in temperature across the time period that we 
examined with an increase of 1.4 degrees. Relative humidity exhibited little change across the 
time-slices. 

For subsequent analyses, we focused only on changes that occur under the A2 scenario. For a 
susceptible cultivar, global average blight unit value was 1.26 for the historical average and 1.27 
for the 2050 time slice. 

Many of the areas where potato is grown exhibited little to no change (-0.5 to 0.5 difference) 
in daily mean blight units during the growing season (Figure 2 and Figure 3). However, blight 
units increased in parts of East-Central South America, China, Europe and Canada. The Andes 
and Himalayan Mountains and Sub-Saharan Africa exhibited a mixture of increasing and 
decreasing blight unit accumulation. Three of the ten countries experiencing the greatest 
increases in blight units are located in Africa (Table 2).	
  

All of the top potato growing countries exhibited an increase less than or equal to 0.11 blight 
units per season change (Table 3) with three countries decreasing. With the minimal changes 
seen in the top producing countries, the effects of resistance are much less pronounced (Table 3) 
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than among the countries most affected (Table 2). Resistant genotypes are effective in reducing 
blight risk in all countries, such that no country experiences average blight unit accumulation 
higher than 0.06.  

In the countries selected to represent specific agro-ecosystems, for a susceptible cultivar late 
blight risk increased in Rwanda and Ethiopia; all other regions examined had a slight decrease in 
the blight unit accumulation at the country level (Table 4). However, the blight unit 
accumulations shift within the growing areas for each country, which could influence potato 
production as some areas experience increased late blight severity, and others experience 
decreased late blight severity. 

 
Discussion  
	
  

In general, potato late blight risk, as evaluated using the metamodel under IPCC scenarios, 
will increase in the near future and then begin to decrease (after the middle of the 21st century). 
However, the predicted effects of climate change are not equal across geographic locations. Not 
all areas experience an initial increase in late blight risk, even under the higher emission 
scenarios, A2 and A1B. Although we focused on the higher emission A2 scenario because it is a 
marker scenario used by the IPCC (2000) and most closely matches current emission levels, 
results were very similar for all three scenarios examined. The greatest noticeable difference was 
that the risk under the B1 scenario does not drop off as much in future time slices. The increase 
and then decrease in late blight risk is most likely due to how the original SimCast model (Fry et 
al. 1983, Grünwald et al. 2000) calculates the accumulation of blight units. In the original 
SimCast model, as temperatures increase from 8-22 degrees C to 23-26 degrees C for a 
susceptible, more hours of leaf wetness (hours above RH 90%) are required to accumulate one 
blight unit. In our analysis, all emission scenarios exhibit an increase in average temperature 
across potato growing regions for their respective growing seasons, and correspondingly the 
blight unit accumulations decrease with the increase in temperature while relative humidity 
changes little. The SimCast model also treats temperature effects differently below the 8-12 
degrees C range.  At cooler hourly temperatures, accumulation of blight units decreases with 
increased temperature. Thus, one would anticipate increased late blight risk for the very coolest 
potato growing areas (e.g., the highest parts of the Andes). These areas probably represent small 
proportions of total potato production in the countries where they occur and may have simply 
counterbalanced warmer areas, contributing to a small change in risk at the country or regional 
level over time. 

Often there are substantial differences among different GCM model outputs (ref) and 
individual GCMs tend to have particular areas where they are more accurate and, as Phillips 
(1984) suggests, there is no one best GCM. Because of this, and because we were interested in 
the effects of climate change globally, rather than for specific areas, we used an ensemble model 
approach (Bates et al., 1969) since. 

Where potato late blight risk increases, what are the implications for management? Potato 
late blight is a challenge to manage, particularly for resource-poor farmers who may have limited 
access to appropriate fungicides (Blandon-Diaz et al., 2011, Kromann et al., 2009), and limited 
knowledge of late blight management. New, effective fungicide compounds have been released 
in markets in the industrialized countries but these often do not make it to developing countries, 
or at least not to the more remote areas. Host plant resistance, shown in this analysis to be an 
effective way of adapting to changing risk, would appear to be a better strategy for developing 
country farmers than fungicide use. Nonetheless, development and adoption of resistant cultivars 
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has been slow (Forbes, 2012). Current levels of resistance provide some benefits, and there is the 
potential for technological advances to increase the level and/or durability of late blight 
resistance. There is also the potential for advances in the quality and durability of fungicides 
used for potato late blight management. Other agronomic practices can also contribute to late 
blight management, including planting dates to avoid conditions that favor late blight (Devaux et 
al., 1987), use of field sanitation, and crop genotype mixtures in the field (Pilet et al., 2006, 
Garrett et al., 2001), though the utility of these practices can also depend on environmental 
conditions (Garrett et al., 2009).  

Studies of global risk invariably include a number of assumptions. First, our study focused on 
risk of late blight in the future at different spatial scales but did not address the suitability of 
these areas for potato production in the future. It is possible that along with a change in risk of 
late blight, the suitability for potato production in these areas also changes due to a changing 
physical or social environment. Second, another aspect of future scenarios that is not addressed 
by evaluations of average conditions is the potential effect of weather extremes and weather 
variability (Rosenzweig et al., 2001, Garrett et al., 2013). Climate data represent weather means, 
but not the typical variation of weather. Late blight risk will likely be affected differently across 
years as a result of changing weather patterns not represented by climate. Third, this model does 
not account for an increase in risk as inoculum builds over the growing season - the compound 
interest principle (Van der Plank, 1963) - it simply evaluates average risk during the three-month 
growing season determined to be optimal for potato yield. The average risk approach used here 
can be viewed as a conservative estimate of differences in risk, while ‘compound interest’ 
pathogen reproduction across the season may produce larger differences in disease risk between 
time slices and between areas.  Fourth, we assumed that inoculum was not limiting, an 
assumption that is generally reasonable for potato late blight.  However, for more detailed 
regional analyses it might be important to evaluate whether inoculum might be limiting in 
particular locations, and how locations may be linked to sources of inoculum (Sutrave et al., 
2012).  Effects of regional inoculum load or ‘risk neighborhoods’ could be incorporated in more 
detailed analyses (Skelsey et al., in review). All else being equal, a location will experience 
higher late blight risk if its neighbors have higher risk. Spatio-temporal models such as those 
developed by Skelsey et al. (2009) can model regional interactions of inoculum loads. At larger 
scales in future scenario analyses, the level of confidence in estimates of fine-resolution weather 
events may not warrant such detailed models evaluation.  Finally, our predictions assume no 
pathogen evolution for the primary driving factors, which in this case are temperature and RH.   
As noted, the predicted decrease in blight units after 2050 occurs because of the requirement for 
longer periods of RH at higher temperatures for infection to occur.  Pathogen change at the 
population level for temperature and RH responses has been recorded in the past and even 
resulted in the reparameterization of a simulation model (  _).  

The choice of planting date is an important one for disease management, and can be used as 
an effective tool in controlling late blight (Devaux et al., 1987). Growers may choose to reduce 
late blight risk by planting in a season that is sub-optimal from the standpoint of potato yield in 
the absence of disease (Devaux et al., 1987). Such a decision would be another type of cost of 
potato late blight risk. In other cases, growers may plant potato in other seasons in addition to the 
optimal season for yield; our analysis does not take into account risk during additional seasons. 
The discrete nature of monthly data can produce some temporary artifacts over time in our 
analysis. In some cases, lags in responses to climate change scenarios may occur because of the 
use of monthly climate data in the ECOCROP model to predict optimal planting dates. A 
particular time slice might not reach a tipping point where the optimal planting month changes 
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and increases blight risk.  
Socio-economic models can also help to inform predictions of future disease risk. Synthesis 

in a GIS of socio-economic models, crop yield models, and data such as generated by mmMonthly 
could provide a general picture of the effects of climate change on potato yield in the future. 
Studies have incorporated crop growth models with socio-economic effects, but apparently have 
not simultaneously included the effects of climate on plant disease (Wei et al., 2009). Other 
types of more detailed socio-economic models could incorporate farmers’ decision-making about 
use of fungicides and resistant varieties, where the regularity of disease impact may influence 
adoption (Lybbert et al., 2010). For example, the adoption of resistant varieties could be 
surveyed or modeled and then coupled with the outputs from a crop health model such as 
mmMonthly for an estimate of the potential impact of releasing a resistant crop genotype. Adoption 
of plant disease management that reduces greenhouse gas emissions per unit product can, itself, 
be considered a form of climate change mitigation (Mahmuti et al., 2009). 

Analyses of future scenarios for potato late blight will continue to improve as models of 
climate/weather, potato production, and disease all improve. We have discussed some of the 
areas for improvement in biological and socio-economic models above. Another area for 
improvement will be the development of coordinated data sets for the global presence of disease 
(Jeger et al., 2008, Shaw et al., 2011). Even though potato late blight is one of the most 
intensively studied plant diseases, extensive maps of observed disease severity are not available. 
This is an even greater problem for less-studied diseases. Without such data sets, ground-truthing 
of model predictions is limited. Future scenario analyses will also need to be updated as new 
information about environmental requirements for pathogens becomes available.  A dramatic 
example of a change in environmental tolerance is the global spread of more heat tolerant and 
aggressive populations of the wheat stripe rust pathogen (Milus et al., 2006, Hovmoller et al., 
2011). There is the potential for P. infestans to develop a wider range of temperature optima. A 
greater impact might result if P. infestans developed greater tolerance for dry conditions, so that 
the relative humidity requirements included in current models of late blight could be relaxed.  
The requirement for high relative humidity, a proxy for leaf surface wetness, is common for 
many foliar pathogens (Caubel et al., 2012, Huber et al., 1992). The requirement for high 
relative humidity may limit the response to climate change for other foliar pathogens, which 
would otherwise have experienced temperature as a primary limiting factor. 

Metamodels such as mmMonthly give plant pathologists new tools for the ongoing battle with 
plant disease. This framework to quickly estimate relative risk globally using readily available 
weather data is a useful tool because previously producing such estimates was computationally 
and time intensive. The mmMonthly metamodel can produce localized results in a few minutes and 
a global estimate for a one month time period at 10 arc-minute resolution in about an hour. These 
sorts of tools provide outputs that allow us to evaluate possible effects of disease control, shifts 
in crop establishment date, and changes in climate.  
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GCM Abbreviation  GCM Model Name  Emission Scenarios  
BCCR BCM2.0  Bjerknes Centre for Climate Research Bergen Climate  A1B, A2, B1  
 Model Version 2.0   
CSIRO mk3.0  Commonwealth Scientific and Industrial Research  A1B, A2, B1  
 Organization GCM mark 3   
GISS AOM  Goddard Institute for Space Studies Atmosphere-Ocean  A1B, B1  
 Model   
INMCM3.0  Institute for Numerical Mathematics Version 3.0  A1B, A2, B1  
MIROC3.2 hires  Model for Interdisciplinary Research on Climate  A1B, B1 	
  
	
  
	
  

Table 1. General Circulation Models (GCM) selected, which provided maximum and minimum 
temperature and relative humidity data for three emission scenarios for use in mmMonthly. 
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Table 2.	
  Daily average blight unit accumulation and change during the growing season for the 
ten potato producing countries experiencing the greatest total increase in blight unit 
accumulation as predicted by mmMonthly model using historic climate normal, 1961-1990 (1975 
time slice), and 2040-2059 (2050 time slice) A2 climate. Blight units are a predictor of 
biological risk based on weather and potato genotype resistance.	
  

 
Susceptible Blight Units Resistant Blight Units 

Country 1975 2050 Change 1975 2050 Change 
Rwanda 2.41 3.55 1.14 1.43 2.22 0.79 
Burundi 2.54 2.97 0.43 1.54 1.82 0.28 
Uruguay 1.87 2.30 0.43 1.05 1.32 0.27 
Portugal 1.19 1.60 0.41 0.65 0.87 0.22 
Iraq 0.58 0.87 0.29 0.28 0.45 0.17 
Greece 0.86 1.15 0.29 0.45 0.62 0.17 
Israel 0.92 1.20 0.28 0.48 0.64 0.16 
New Zealand 2.43 2.70 0.27 1.41 1.60 0.19 
Estonia 2.39 2.65 0.26 1.38 1.58 0.20 
Egypt 0.41 0.63 0.22 0.21 0.33 0.12 
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Table 3. Daily average blight unit accumulation and change during the growing season for the 
top ten potato producing countries by number of hectares planted to potato as predicted by 
mmMonthly model using historic climate normal, 1961-1990 (1975 time slice) and 2040-2059 
(2050 time slice) A2 climate scenario. Blight units are a predictor of biological risk based on 
weather and potato genotype resistance. 

Country 
Hectares 
of Potato 

Susceptible Genotype 
Blight Units 

Resistant Genotype 
Blight Units 

  
1975 2050 Change 1975 2050 Change 

China 4401727 1.34 1.33 -0.01 0.75 0.75 0.00 
Russia 3229000 1.12 1.17 0.05 0.61 0.65 0.04 
Ukraine 1600000 1.28 1.30 0.02 0.70 0.71 0.01 
India 1410000 0.88 0.96 0.08 0.34 0.38 0.04 
Poland 811979 2.17 2.13 -0.04 1.24 1.22 -0.02 
Belarus 540000 2.02 1.69 -0.33 1.15 0.94 -0.21 
United States 516590 0.88 0.90 0.02 0.48 0.49 0.01 
Germany 284078 1.81 1.92 0.11 1.02 1.08 0.06 
Peru 271185 1.34 1.35 -0.01 0.66 0.64 -0.02 
Romania 270000 1.98 2.04 0.06 1.12 1.15 0.03 
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Table 4. Mean change in blight units from historic climate normal, 1961-1990 (1975 time slice) 
to 2040-2059 (2050 time slice) for the A2 climate scenario for select highland or lowland 
tropical potato production areas where potato is an important crop for poverty alleviation and 
where late blight is difficult to manage because of year-round potato production. Blight units are 
a predictor of biological risk based on weather and potato genotypic resistance.	
  	
  

Agroecosystem Country Susceptible Genotype 
Blight Units 

Resistant Genotype 
Blight Units 

1975 2050 Change 1975 2050 Change 

Andean Highlands 
Colombia and 
Ecuador 

2.23 2.20 -0.03 1.03 1.00 -0.03 

Ethiopian Highlands Ethiopia 0.63 0.68 0.05 0.33 0.35 0.02 

Lake Kivu Highlands Rwanda 2.41 3.55 1.14 1.43 2.22 0.79 

Indo-Gangetic Plain 
and Himalayan 
Highlands 

Nepal 1.47 1.45 -0.02 0.85 0.81 -0.02 

South East Asia 
Highlands 

Indonesia 1.84 1.78 -0.06 0.75 0.69 -0.06 
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Figure 1: Average yearly global blight unit accumulation during the growing season for four time 
slices for four time slices: 1961-1990, 1975 time slice; 2000-2020, 2010 time slice; 2040-2060, 
2050 time slice; and 2080-2100, 2090 time slice, for three IPCC emission scenarios: A2; A1B; 
and B1. Blight units are a measure of the biological risk of damaging levels of late blight of 
potato developing due to favorable weather conditions and are derived from the SimCast model. 

Figure 2: Average yearly global potato growing seasons’ and regions’ temperatures for four time 
slices: 1961-1990, 1975 time slice; 2000-2020, 2010 time slice; 2040-2060, 2050 time slice; and 
2080-2100, 2090 time slice, for three IPCC emission scenarios: A2; A1B; and B1. 	
  

Figure 3: The change in global potato late blight relative risk as predicted by mmMonthly model 
using historical climate normal, 1961-1990 (1975 time slice) and 2040-2059 (2050 time slice) 
A2 climate scenario for a susceptible potato genotype. Blight units are a predictor of biological 
risk based on weather and potato genotypic resistance. Areas of highest increased risk appear in 
dark red, areas of greatest decreased risk appear in dark blue and grey indicates limited potato 
production.  
 
Figure 4: The change in global potato late blight relative risk as predicted by mmMonthly model 
using historic climate normal, 1961-1990 (1975 time slice) and 2040-2059 (2050 time slice) A2 
climate scenario for a resistant potato genotype. Blight units are a predictor of biological risk 
based on weather and potato genotypic resistance. Areas of highest increased risk appear in dark 
red, areas of greatest decreased risk appear in dark blue and grey indicates limited potato 
production.  
 
Figure 5: The change in potato late blight relative risk for the Andean Highlands of Colombia 
and Ecuador as predicted by mmMonthly model using historic climate normal, 1961-1990 (1975 
time slice) and 2040-2059 (2050 time slice) A2 climate scenario for a susceptible potato 
genotype. Blight units are a predictor of biological risk based on weather and potato genotypic 
resistance. Areas of highest increased risk appear in dark red, areas of greatest decreased risk 
appear in dark blue and grey indicates limited potato.  
 
Figure 6: The change in potato late blight relative risk for the Ethiopian Highlands as predicted 
by mmMonthly model using historic climate normal, 1961-1990 (1975 time slice) and 2040-2059 
(2050 time slice) A2 climate scenario for a susceptible potato genotype. Blight units are a 
predictor of biological risk based on weather and potato genotypic resistance. Areas of highest 
increased risk appear in dark red, areas of greatest decreased risk appear in dark blue and grey 
indicates limited potato production.  
	
  
Figure 7: The change in potato late blight relative risk for the Lake Kivu highlands region and 
Rwanda as predicted by mmMonthly model using historic climate normal, 1961-1990 (1975 time 
slice) and 2040-2059 (2050 time slice) A2 climate scenario for a susceptible potato genotype. 
Blight units are a predictor of biological risk based on weather and potato genotypic resistance. 
Areas of highest increased risk appear in dark red, areas of greatest decreased risk appear in dark 
blue and grey indicates limited potato production.  
	
  
Figure 8: The change in potato late blight relative risk for the Indo-Gangetic Plain and 
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Himalayan Highlands in Nepal as predicted by mmMonthly model using historic climate normal, 
1961-1990 (1975 time slice) and 2040-2059 (2050 time slice) A2 climate scenario for a 
susceptible potato genotype. Blight units are a predictor of biological risk based on weather and 
potato genotypic resistance. Areas of highest increased risk appear in dark red, areas of greatest 
decreased risk appear in dark blue and grey indicates limited potato production.  
	
  
Figure 9: The change in potato late blight relative risk for the South East Asian Highlands in 
Indonesia as predicted by mmMonthly model using historic climate normal, 1961-1990 (1975 time 
slice) and 2040-2059 (2050 time slice) A2 climate scenario for a susceptible potato genotype. 
Blight units are a predictor of biological risk based on weather and potato genotypic resistance. 
Areas of highest increased risk appear in dark red, areas of greatest decreased risk appear in dark 
blue, grey indicates limited potato production.  
 
	
  


