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We describe a generalised downscaling and data generation method that takes the outputs of a General
Circulation Model and allows the stochastic generation of daily weather data that are to some extent
characteristic of future climatologies. Such data can then be used to drive any agricultural model that
requires daily (or otherwise aggregated) weather data. The method uses an amalgamation of unintelli-
gent empirical downscaling, climate typing and weather generation. We outline a web-based software
tool (http://gismap.ciat.cgiar.org/MarkSimGCM) to do this for a subset of the climate models and scenario
runs carried out for the 2007 Fourth Assessment Report of the Intergovernmental Panel on Climate
Change. We briefly assess the tool and comment on its use and limitations.
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1. Introduction

The availability of weather data continues to be a serious con-
straint to undertaking many applied research activities in the
realm of agriculture, particularly in developing countries. Because
weather is a primary determinant of agricultural production,
weather data are needed for many different types of analysis in
agricultural science. In addition to the data availability problem,
the format in which data are available may be a considerable con-
straint to their widespread use. Nowhere is this more apparent
than in agricultural impacts modelling, particularly in relation to
utilising the outputs of climate models to evaluate possible im-
pacts of climate change on crop and livestock production systems
over the coming decades. The outputs from General Circulation
Models (GCMs), climate models that project into the future, are al-
most never in a form that can be used directly to drive agricultural
models. Considerable processing has to be gone through before
such data can be meaningfully used, both for assessing possible
impacts and for evaluating adaptation options. This processing
generally involves downscaling the outputs from coarse-scaled
GCMs to higher spatial and temporal resolutions. Various methods
ll rights reserved.
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of downscaling exist, each with its own advantages and disadvan-
tages, and each appropriate for different situations (Wilby et al.,
2009). Reliable downscaling depends on the availability of reliable
historical weather and climate data. Unfortunately, particularly in
many developing countries, ground-based observation has de-
clined considerably in the last several decades (Funk et al., 2011).
Satellite technology is advancing rapidly and some aspects of
weather and climate can be measured this way but such data are
a complement to ground-based observation and not a substitute.

Here we describe a generalised downscaling and data genera-
tion method, which takes the outputs of a GCM describing a partic-
ular future climatology and allows the stochastic generation of a
core set of daily weather data that are to some extent characteristic
of this future climatology. This builds on previous methods, out-
lined and applied in Thornton et al. (2006), which utilised data
from a suite of climate models used for the Third Assessment Re-
port of the Intergovernmental Panel on Climate Change (IPCC,
2001). These methods have been modified to use outputs from
the later generation of climate models utilised in the IPCC’s Fourth
Assessment Report (IPCC, 2007). The approach is fast and general-
isable, and uses a mixture of methods, including simple interpola-
tion (what Wilby et al. (2009) call ‘‘unintelligent downscaling’’),
climate typing and weather generation. Below we describe a
web-based tool that uses these methods with a user interface in
Google Earth and provides the user with daily weather data for
current and future climatologies, which can then be used directly
to run some widely-used crop models.
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2. Materials and methods

2.1. Processing the GCM data

Outputs from many GCMs are available in the public domain,
notably in the World Climate Research Program’s (WCRP’s) Cou-
pled Model Intercomparison Project phase 3 (CMIP3) multi-model
dataset. This dataset contains model output from 22 of the GCMs
used for the Fourth Assessment (AR4; see Table 8.1 in Randall
et al., 2007) and for a range of scenarios including the three scenar-
ios reported on in the IPCC’s Special Report on Emission Scenarios
(SRES) used in the AR4. They are: A2, a high-greenhouse-gas-
emission scenario; A1B, a medium-emission scenario; and B1, a
low-emissions scenario. The SRES scenarios are described in detail
in Nakicenovic et al. (2000).

Model output data are not available for all combinations of GCM
and scenario for the basic ‘‘core’’ variables that are needed to drive
many crop and pasture models (precipitation, maximum daily
temperature and minimum air temperature). From CMIP3 and
the Climate and Environmental Retrieval and Archive (CERA) data-
base at the German Climate Research Centre (DKRZ), we found
complete data for the three scenarios for a total of six GCMs (Ta-
ble 1). As other data become available in the future, they can sub-
sequently be included in the software.

SRES emission scenarios are considerably different in terms of
projected changes in temperatures and rainfall for different re-
gions. Table 2 shows the projected mean impacts on global tem-
perature of these different scenarios from the IPCC multi-model
ensemble for different time-slices. Although differences between
the three scenarios in global warming impacts to 2050 are limited,
thereafter these become considerable. Temperature shifts also vary
substantially by region. Many GCMs project mean average temper-
ature increases to 2050 for the East Africa region, for example, that
are larger than the global mean: for scenario A2, of between about
1.5–2.5 �C. In addition to differences between the emission scenar-
ios used to drive the climate models, the GCMs themselves can
vary greatly. It is straightforward to plot rainfall and temperature
patterns from different GCMs using the data and tool on the web-
site www.ipcc-data.org, for example. GCMs differ in consistency
for regional climate projections, particularly related to precipita-
tion (IPCC, 2007).

The general scheme of the analysis here is as follows. First, we
obtained data from the GCMs for five time slices: 1991–2010 (de-
noted ‘‘2000’’), 2021–2040 (denoted ‘‘2030’’), 2041–2060 (denoted
‘‘2050’’), 2061–2080 (denoted ‘‘2070’’) and 2081–2100 (denoted
‘‘2090’’) for average monthly precipitation and daily maximum
(Tmax) and minimum (Tmin) air temperatures. Processing of these
data resulted in calculated mean monthly climatologies for each
time slice and for each variable from the original daily time series
produced by each GCM. The mean monthly fields had been inter-
polated, by the original agencies from whom we obtained the data,
from the original resolution of each GCM to 0.5� latitude–longitude
Table 1
Atmosphere-Ocean General Circulation Models (AOGMCs) used in the work (details from

Model name (Date) Institution

BCCR_BCM2.0 (2005) Bjerknes Centre for Climate Research (University of B
CNRM-CM3 (2004) Météo-France/Centre National de Recherches Météor
CSIRO-Mk3.5 (2005) Commonwealth Scientific and Industrial Research Or

Atmospheric Research, Australia
ECHam5 (2005) Max Planck Institute for Meteorology, Germany
INM-CM3_0 (2004) Institute for Numerical Mathematics, Moscow, Russi
MIROC3.2 (medres) (2004) Center for Climate System Research (University of To

National Institute for Environmental Studies,
and Frontier Research Center for Global Change (JAM

Ensemble average Average climatology of the above 6 AOGCMs
using conservative remapping, which preserves the global aver-
ages. Second, we calculated monthly climate anomalies (absolute
changes) for monthly rainfall, mean daily maximum temperature
and mean daily minimum temperature, for each time slice relative
to the baseline climatology (1961–1990). The point of origin
was designated 1975, being the mid point of the 30-year climate
normals.

Third, we fitted a functional relationship to the climate projec-
tions for the variables of interest through time, so that we could
interpolate the projections to any year. We inspected the responses
of the chosen models and found that they were considerably more
complicated than those of the third approximation models used in
the previous exercise (Thornton et al., 2006). There it was found by
stepwise regression that a cubic term was superfluous to describe
the projections over time. In the current case, we made a prelimin-
ary investigation of the functional forms of the projections using
cluster analysis. All pixels from each of the climate models for sce-
nario A1B were clustered for precipitation, Tmax and Tmin using the
values of the five periods as clustering variates. We used a leader
clustering algorithm (Hartigan, 1975) to cope with the volume of
data. The threshold was set to produce from 40 to 100 clusters,
which were ranked by the number of pixels, and the cluster means
were used to inspect the functional form. The first five clusters
normally covered 80–90% of the pixels for any given model.

We fitted polynomials through the cluster means by date (con-
strained through the origin) and this showed that in many cases a
quadratic fit over time would have sufficed but in numerous cases
only a fourth-order polynomial would suffice. We therefore
decided to fit fourth-order polynomials throughout. We made
these fits for all models at all scenarios and made another set for
the average of the six models. We constructed world maps of the
residual surfaces for every time period for each variate and for each
model and scenario. Visual inspection of every map showed that
deviations from the fitted curves were within expectations for all
the models. Finally, we condensed the polynomial coefficients into
a data file structure for ready retrieval on a pixel-by-pixel basis (at
a resolution of 30 arc-min) for use in subsequent operations:
downscaling the anomalies to a higher resolution, and then gener-
ating daily weather data that are characteristic, to some extent, of
the future climatologies produced, using a stochastic daily weather
generator.

2.2. Generating daily data: MarkSim�

MarkSim� is a third-order markov rainfall generator (Jones and
Thornton, 1993, 1997, 1999, 2000; Jones et al., 2002), which has
been developed over 20 years. It was not designed as a GCM
downscaler, but it does now work as such, employing both
stochastic downscaling and climate typing.

The basic algorithm of MarkSim is a daily rainfall simulator that
uses a third-order markov process to predict the occurrence of a
rain day. A third-order model was shown to be necessary for
Randall et al., 2007).

Reference Resolution Code

ergen, Norway) Furevik et al. (2003) 1.9 � 1.9� BCC
ologiques, France Déqué et al. (1994) 1.9 � 1.9� CNR
ganisation (CSIRO) Gordon et al. (2002) 1.9 � 1.9� CSI

Roeckner et al. (2003) 1.9 � 1.9� ECH
a Diansky and Volodin (2002) 4.0 � 5.0� INM
kyo),

STEC), Japan

K-1 Model Developers (2004) 2.8 � 2.8� MIR

– – AVR

http://www.ipcc-data.org


Table 2
Projected mean impacts on global temperatures of three different scenarios.a

Scenario 2011–2030 2046–2065 2080–2099

A2 (‘‘high’’ emissions) 0.64 1.65 3.13
A1B (‘‘medium’’ emissions) 0.69 1.75 2.65
B1 (‘‘low’’ emissions) 0.66 1.29 1.79
Committed warming (emissions

stabilised at 2000 levels)
0.37 0.47 0.56

a Global mean warming from the Intergovernmental Panel on Climate Change
(IPCC) multi-model ensemble mean (all climate models) for three periods relative
to 1980–1999 for the A2, A1B and B1 emissions scenarios from the IPCC’s Special
Report on Emission Scenarios (SRES). Table from Wilby et al. (2009); data source
IPCC (2007).
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tropical climates, whereas a lower-order model may suffice for
temperate climates (Jones and Thornton, 1993). The crux to the
efficiency of MarkSim in simulating the actual variance of rainfall
observed both in the tropical and temperate regions is its innova-
tive use of resampling of the markov process parameters. To do
this, we need the 12 monthly baseline transfer probabilities (i.e.,
the probability of a wet day following three consecutive dry days),
the probability coefficients related to the effect of each of the three
previous days and the correlation matrix of the 12 baseline proba-
bilities, all obtained from historical daily rainfall data.

MarkSim therefore works from a large set of parameters;
including those for rainstorm size, the set totals 117. To make a
globally valid model that does not need recalibration every time
it is used, we have constructed a calibration set of over 10,000
stations worldwide. These were clustered into 702 climate clusters
using the 36 values of monthly precipitation and monthly maxi-
mum and minimum temperatures. Almost all except a few of the
calibration stations have more than 10 years of (almost) continu-
ous data. Most stations have 15–20 years of data; a few have
100 years or more. Some of the 117 parameters of the MarkSim
model are calculated by regression from the cluster most represen-
tative of the climate point to be simulated; the correlation matrix
of monthly rainfalls is represented by a mean matrix for the
cluster.

MarkSim estimates daily maximum and minimum air tempera-
tures and daily solar radiation values from monthly means of these
variables, using the methods originating with Richardson (1981).
Monthly solar radiation values are estimated from temperatures,
longitude and latitude using the model of Donatelli and Campbell
(1997).

MarkSim guarantees that, in the long run, the values used as a
starting point for a simulation series will be returned as the aver-
age of the simulated series. This is to be expected in a valid weath-
er simulator. If this were all it could do, it would not be judged a
good downscaler. When GCM differentials are added to the starting
values, not only may the regression values for the coefficients
change but they may completely change the climate cluster that
is associated with that point. This means that the simulated
climate has been shifted to a different type. Thus we have a form
of ‘‘climate typing’’: the type model of the climate can change
depending on the GCM differentials, as can the response regres-
sions for the parameters.

This raises a question that we are currently addressing: when
does a GCM differential addition take us out of our current cluster
space? As yet we do not know. We can calculate just how far any
given climate on earth is outside the MarkSim current cluster
space, and we have found that about 20% are more than two
standard deviations from a calibrated cluster, based on WorldClim,
a 1-km interpolated climate grid for the globe (Hijmans et al.,
2005). There are two points to make here. First, we can improve
the current calibration considerably. We already have a wealth of
new data to incorporate in the next MarkSim calibration, and this
can be done given appropriate time and resources. Second, we
need to look carefully at the climates that are going to occur with
global warming. This is problematic: we have reasonably good
estimates of future climates from GCMs, but we have no good esti-
mates of future weather. When a GCM differential puts a point out
of the range of MarkSim’s simulation clusters then we can only
extrapolate from the nearest climate we have now. We can hope
that not too many pixels on the earth fall into this situation in
the near future; but for more distant future climates, the situation
is highly uncertain.
2.3. Using Marksim

For any location, MarkSim makes use of a climate record. This is
independent of the scale of the data but is constant in its form and
acceptability to the rest of the MarkSim software. A climate record
contains the latitude, longitude and elevation of the location, and
monthly values of rainfall, daily average temperature and daily
average diurnal temperature variation. It also includes the tempo-
ral phase angle, that is, the degree by which the climate record is
‘‘rotated’’ in date. This rotation is done to eliminate timing differ-
ences in climate events, such as the seasons in the northern and
southern hemispheres, so that analysis can be done on standard-
ised climate data. The climate record is rotated to a standard date,
using the 12-point Fast Fourier transform, on the basis of the first
phase angle calculated using both rainfall and temperature (Jones,
1987; Jones et al., 2002). In MarkSim, almost all operations are
done in rotated date space.

The estimated GCM differential values are added to the rotated
record. This is an example of unintelligent downscaling (Wilby
et al., 2009); inverse square distance weighting is used over the
valid elements of the nearest nine GCM cells. This can be done with
a climate database such as WorldClim (Hijmans et al., 2005),
although pre-rotated MarkSim datasets are available. WorldClim
may be taken to be representative of current climatic conditions
(most of the data cover the period 1960–1990). It uses historical
weather data from a number of databases. WorldClim uses thin
plate smoothing with a fixed lapse rate employing the program
ANUSPLIN. The algorithm is described in Hutchinson (1997).
3. Results

A FORTRAN object oriented module was developed to carry out
the downscaling outlined above, and this has been linked to a
graphical user interface in Google Earth. The module, called MarkS-
imGCM, is freely available at http://gismap.ciat.cgiar.org/MarkS-
imGCM/. The user chooses a location (the program will work for
any location on land for which WorldClim has underlying climate
normals), and then chooses one of the GCMs shown in Table 1 or
the ensemble average climatology, one of the three scenarios
shown in Table 2, the centre of the time slice to which the gener-
ated data will refer, and the number of years of daily weather data
required (from 1 to 99). The random number seed for the weather
generation can also be set if required, otherwise it is set at random
by the system clock on the computer running the application.
There is also the option to generate daily data that are representa-
tive of current conditions as in WorldClim; in this way, MarkS-
imGCM operates as an updated version of the CD-based release
of MarkSim (Jones et al., 2002).

MarkSimGCM currently produces output in two formats: as
annual charts of daily rainfall, maximum and minimum air tem-
peratures and solar radiation; and as annual data files that are fully
compatible with the DSSAT (Decision Support System for Agro-
technology Transfer) crop modelling suite (ICASA, 2007). These

http://GISMAPVM.CGIARAD.ORG/MarkSimGCM/
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Table 3
Comparison of MarkSimGCM simulations with historical data from 73 rainfall stations arranged into 12 Köppen climate classes.

Köppen
classa

Number of
stations

Average precipitation (mm per year) Variance of annual rainfall Variance
ratio, F

Probabilityd

of F
Degrees of
freedom (DF)

MarkSimb Historical datac MarkSimb Historical datac

Af 5 2479 2423 173,672 285,315 1.643 0.131 27
Ah 1 1136 1120 88,101 63,970 1.377 0.118 60
Ase 9 1380 1373 78,574 65,654 1.197 0.266 48
Aw 10 1275 1217 97,399 131,545 1.351 0.145 52
Bs 12 562 523 22,591 26,057 1.153 0.305 61
Bw 6 268 233 9300 9171 1.014 0.473 69
Cr 1 1680 1673 86,830 149,219 1.719 0.041 34
Cs 3 837 809 39,574 61,482 1.554 0.059 56
Cw 14 767 732 32,489 34,440 1.060 0.419 65
Dc 9 563 557 17,296 12,759 1.356 0.101 99
Do 2 832 788 31,784 16,263 1.954 0.010 51
Eo 1 949 877 47,974 20,272 2.367 0.053 12

a See, for example, www.fao.org/sd/EIdirect/climate/EIsp0002.htm for a description of the Köppen system.
b From 50 years of simulations.
c Calculated from years of the sample data that were complete with 12 months of data with over 25 days of registered rainfall (missing days were compensated).
d Calculated using the NAG (1995) library using the degrees of freedom of the MarkSim estimate (49) and the pooled estimate (DF) depending on which way the

comparison was made (Fisher and Yates, 1967).
e ‘‘As’’ is not a standard Köppen class; it defines a tropical climate where the main rainfall is in the summer months defined by their analogous months in subtropical climes

in the same hemisphere (the climatology of the two types is quite different).
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DSSAT files can be downloaded as a zip file by the user, if required,
and used directly to run any of the crop models in the DSSAT.

While MarkSim itself has been extensively tested (see Jones and
Thornton, 1993; Jones and Thornton, 1997), here we ran a compar-
ison of MarkSimGCM simulations with historical data from 73
rainfall stations covering a range of different rainfall regimes, in
terms of the average annual rainfall and the variance of annual
rainfall. For each station, a MarkSimGCM run was carried out for
current climate to produce 50 years of simulated data, and the an-
nual mean and variance were calculated. Each station was classi-
fied according to the Köppen classification and simulated means
and variances were pooled within each class. Results are shown
in Table 3. MarkSim either underestimates or overestimates the
annual rainfall variance by a small amount over much of the range
tested, but mostly insignificantly. However, significant, systematic
variation does appear to happen in the colder climates (D and E)
where MarkSim consistently overestimates variance. Although
MarkSim was developed for the tropics, this does warrant further
study. This testing also highlighted another issue: two of the test
stations, Morropan, Peru (latitude 5.18�S, longitude 79.98�W) and
Guayaquil, Ecuador (latitude 2.15�S, longitude 79.88�W), lie on
the western coast of South America in an area considerably
affected by the El Niño-Southern Oscillation (ENSO) effect. Mark-
Sim simulates their average rainfall reasonably accurately, but it
is not currently able to simulate accurately an ENSO effect that
produced an annual rainfall almost ten times the long-term aver-
age twice during the period for which we have measured data
(data not shown). Whether MarkSim can be adapted to simulate
such extreme rainfall variances is an interesting question. How-
ever, we now have more than 44,000 stations of rainfall data
waiting to be incorporated into MarkSim version 2, compared with
the 9200 stations that are in the version tested here.

The data produced by MarkSimGCM can, with care, be used in
many ways. We have used them to identify areas of sub-Saharan
Africa in which cereal cropping may become increasingly risky in
the future, where the increased probabilities of failed seasons
may mean that people will need to shift from cropping and in-
crease their dependence on livestock (Jones and Thornton, 2009).
We have used similar methods to assess possible changes in yields
of maize and beans in East Africa, using the bean and maize models
in the DSSAT (Thornton et al., 2009). Recently, we have used these
data in a study to identify ‘‘hotspots’’ of climate change and food
insecurity to target research activities in the tropics on adaptation,
mitigation and risk management (Ericksen et al., 2011).
4. Discussion and conclusions

All downscaling activity is affected by considerable uncertain-
ties of different types. First, even from the GCMs themselves, it
is clear that present and future predictability of climate variability
and climate change is not the same everywhere and that gaps in
knowledge of basic climatology are revealed by a lack of agree-
ment between climate models in some regions (Wilby, 2007).
While confidence in projected patterns of warming and sea level
rise is higher now, confidence is less in projections of the numbers
of tropical storms and of regional patterns of rainfall over large
areas of Africa, south Asia and Latin America. This highlights the
importance of using different scenarios and different models to
assess likely climate changes and their impacts. Second, our under-
standing is limited of what the local-level impacts of climate
change are likely to be, which means that evaluating the adequacy
of different downscaling techniques is difficult. Third, a significant
gap lies between the information that we currently have at
seasonal time scales and the information we have at longer time
scales: information about what is likely over the next 3–20 years,
critical for many types of planning, is still largely missing (Wash-
ington et al., 2006).

Despite these uncertainties, MarkSimGCM can provide weather
data for possible future climatologies that agricultural impact
modellers can use with care. We are currently in the process of
increasing the number of formats in which output data can be
exported, and a stand-alone version of the software is being
developed that can be called from scripts or other computer pro-
grams, to facilitate the generation of weather data for large num-
bers of grid cells, if required. We also plan to adapt the software
to include CMIP5 datasets (model runs being undertaken for the
IPCC’s Fifth Assessment report, scheduled for release in September
2013), as these become available. As noted in Section 2.2, the
power of MarkSim and MarkSimGCM could be considerably in-
creased by the addition of large numbers of additional calibration
stations. This might lead to more information being extractable
from downscaled GCM data on the nature of the variability of
weather that is associated with different climate clusters. Without
this, the lack of information on future weather variability associ-
ated with future climatologies is likely to remain a stumbling block
to comprehensive impact assessment studies. In the meantime,
MarkSim GCM provides a straightforward way of investigating
some of the potential impacts of changes in climatology on agricul-
tural systems in the coming decades.

http://www.fao.org/sd/EIdirect/climate/EIsp0002.htm
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